相信大家看完 解密劍橋大學最難筆試 – STEP(上)已經對STEP有了直觀的認識,這篇STEP(下)給同學們帶來純干貨分享!
李老師教了5年STEP,每年都能看到學生的劍橋之夢止步于STEP考試,甚至有學生辛辛苦苦拿到了劍橋的OFFER,可是條件確是STEP II和III的Double S,也是心疼這位學生一秒鐘。其實STEP考試雖然變態難,但并非無解,今天李老師就來重點剖析一下STEP考試中常見的套路,以及有效的解決辦法,給大家平時的學習備考中提一些建議。
STEP有哪些常見套路?
套路1:參數化
相較于A-LEVEL題目的具體問題,STEP更喜歡直接根據參數找到一個general result,并看特定參數下的應用。如以下這題:
?套路2:相關性
從上題也可看出STEP題的另外一個特征:前后題目相關性很強,即用前面小問的結論做后面的問題。有時會有’hence’,’therefore’等關鍵詞作提示。如上題,只要用心觀察找對幾個參數的值,這題就能引刃而解。有時題目不會明說,但是考生也得細心觀察找出前后聯系。下題是另一個例子:

李老師點評:只需細心觀察前后兩小問積分上下限便可知第二小問實際就是第一小問。
套路3:老公式新用
在A-LEVEL舊有的公式上進行新的應用,比如學生很熟悉的 sin (x+y) = sin (x) cos (y) + cos (x) sin (y) ,STEP不考這個,而是要求考生應用由他推導出來的和差化積或積化和差公式,并在此基礎上進行證明。比如下面這題的第一個證明:

套路4:大學數學提前考
STEP喜歡先介紹一個新的概念(基本來自于大學數學)并要求學生馬上會用。比如下題的Chebyshev’s? Inequality:

李老師點評:考新知識點時,題目有時會給提示,但是提示比A-LEVEL少,并進一步要求學生完全理解提示的意義找到新的更隱蔽的Hint(真是套路深啊!)。
下題就是一個典型: 第一小問直接給提示 Use the subsitution of y = u x,第二小問用第一小問的代換,第三小問的代換需要根據前兩題的解題過程的特點(隱藏Hint)來找。

套路5:計算量大
例如Integration by parts的知識點在會使用兩次或更多。對于習慣了用一次公式就得出結論的A-LEVEL學生來講,思想上準備往往不充分,容易自我懷疑而半途而廢,請看下題的第二小問:

李老師點評:這時候你要想相信自己的判斷。
套路6:綜合題居多
例如下題,表面上是個概率的題目,但實際上要證明數論的一個結論。

李老師點評:像該類綜合題,在考察學生運算能力的同時,更是綜合能力的檢測。
套路7:力學題計算復雜
對于力學題,通常概念簡單,但是計算(Algebra)比較復雜。對于不想多動腦筋,但是計算能力強的考生可以考慮多做力學題目。如下面這一題,是普通的一個Projectile情況稍稍變形一下,只需計算找出最晚落地的子彈并計算就可。

套路8:概率題刁鉆
對于概率和統計:STEP I和II考試偏向于概率,概率比較多變,在很多情景中都可以考到。

套路9:統計題偏理論
STEP III第三部分偏向于統計理論,有較多大學統計理論的內容,然而沒有概率題靈活。下一題就是普通的一道大學統計理論題:

你該如何反套路?
1. 選題很關鍵
首選畫圖題,通常都有相應的步驟來作圖,邏輯清楚,簡單明了
次選力學題,尤其是動量沖量和拋射體的題,題型單一,變化較少
至于數論的題千變萬化,可以選擇放棄
2. ‘STEPISATION’
平時做A-LEVEL練習的時候,可以嘗試著將題目“STEP化“來練習。比如以下這道很普通的A-LEVEL題目:

相信這題大家都會解答,如果把題目改寫成’Use the binomial expansion, in ascending powers of of 1/ (sqt (1-2x)) to find an approximation to sqt (10) ’, 這樣改寫之后就可以作為一道STEP中的一小問。
3. 千萬別湊題
注重做題的完整性。和大學數學一樣,STEP更追求的是精而非廣。試卷第一頁的考試注意事項上的這兩句話需要得到更多的重視:

4.?條件與結論平等
要牢記,題目給出的條件和我們需要證明的結論是等價的。我們可以嘗試用結論反著推,嘗試找到與條件相似的形式,并用條件嘗試推導到此形式,最后從頭開始,用條件開始在新的一頁紙上推導到結論。即使條件和結論不是互推的,也要不斷問自己結論的之前一步是什么,并不斷變形,不斷往條件靠攏,直到他們Converge為止。
總而言之
首先了解到自己目標學校目標專業對STEP的要求,根據要目標來制定計劃。如目標OFFER的STEP要求較低(比如2),可在保證正確率的前提下少做兩題。
早準備,充分準備。把題型分類:必做題,選做題和不做題。最重要的是找出適合自己的知識點及題型并不斷練習,最大化必做題得分。
可根據Past papers,找出新的知識點,并自學,或適當自學部分大學數學,把部分新知識變成熟悉的知識。

? 2025. All Rights Reserved. 滬ICP備2023009024號-1