譯者按:作者系2010年度菲爾茲獎(jiǎng)獲得者,里昂大學(xué)數(shù)學(xué)教授與彭加萊研究所所長。文章來自他的個(gè)人主頁(http://cedricvillani.org/plant-your-math-and-let-it-grow/),介紹了他與合作者研究最優(yōu)輸運(yùn)問題、刻畫里奇曲率的工作的歷程,最后還由此總結(jié)了一些有啟發(fā)的研究體會。

幾天之前,我在東北大學(xué)做高木講座[1]。我為此寫了一篇綜述文章《里奇曲率的綜合理論》(http://cedricvillani.org/wp-content/uploads/2015/07/takagi-2.pdf)。里奇曲率理論是一個(gè)在過去多年間蓬勃發(fā)展的研究主題。
什么是綜合理論呢?我們在中學(xué)學(xué)習(xí)過,有多種方法做平面上的初等幾何。平面幾何可以用方程與笛卡爾坐標(biāo)來做(直線由方程ax+by+c=0來描述,圓由ax^2+by^2+cx+dy+e=0這樣的方程來描述,等等)。但平面幾何也可以用古希臘的方式來做:使用公理以及三角形、直線等的性質(zhì),但不寫下任何方程。第一種方法是解析法(可以計(jì)算,并使用方程),第二種方法是綜合法(使用概念與性質(zhì))。兩種方法各有千秋,分別有其優(yōu)點(diǎn)與缺點(diǎn)。一般來說,解析法更加系統(tǒng),而綜合法更加漂亮。用解析法常常能得到更多定量結(jié)果,而綜合法可以提供更好的理解。認(rèn)識到平面幾何可以有兩種等價(jià)的方法來處理,是高中生的數(shù)學(xué)教育上的一個(gè)重大的概念進(jìn)步。
什么是里奇曲率呢?顯然,它是一個(gè)有關(guān)曲率的概念,也顯然是由以一位叫里奇的人的名字命名的。確實(shí),格雷戈里奧·里奇-庫爾巴斯托羅(Gregorio
Ricci-Curbastro)是20世紀(jì)初意大利幾位重要的幾何學(xué)家之一,以他的名字命名的曲率是幾個(gè)最重要的曲率概念之一。曲率是自高斯與黎曼以來都使用的用來定量刻畫一種幾何與歐幾里得幾何差別多大的概念。里奇曲率反映非歐幾何中體積的扭曲。它也以在愛因斯坦的的廣義相對論中起作用而最為知名。粗略地說,若你生活在一種里奇曲率為正的幾何中,則由于光線偏移(因?yàn)楣饩€彎曲而非直射),你所見到的明物總是比真實(shí)的要大(指更大的體積)。

格雷戈里奧·里奇-庫爾巴斯托羅(1853 – 1925)
里奇曲率是在非歐幾何上做研究的概率學(xué)者的最愛,在20世紀(jì)里,它主要被用分析的方法——使用方程——來處理。但從90年代以來,專家開始考慮如何用綜合方法來理解里奇曲率不等式。同時(shí),與此相應(yīng)的是,截面曲率的綜合處理取得了很多成功。在解決這問題的過程中,有一些美麗的偶遇,以及多年的共同努力。
大約15年前,在這個(gè)理論開始之初我就參與其中。當(dāng)時(shí)只有幾篇文章。現(xiàn)在這個(gè)領(lǐng)域已有許許多多的文章,成千上萬的頁面。然而,寫下它是如何開始的,仍然非常有意思。
回到1998年,我剛好博士答辯完,我去參加一個(gè)由我的導(dǎo)師(tutor)Yann
Brenier組織的一個(gè)關(guān)于最優(yōu)輸運(yùn)的研討會。這是一個(gè)關(guān)于將一定量的物質(zhì)從某個(gè)初始位置重組織到另一個(gè)位置的理論。研討會的參與者來自不同方向:統(tǒng)計(jì)物理、等周理論、流體力學(xué);但他們都由最優(yōu)輸運(yùn)這一共同興趣而來到一起。

加斯帕·蒙日(1746-1818)

蒙日的“挖”與“填”(圖片來自維拉尼的書《最優(yōu)輸運(yùn):舊識與新知》第一版第42頁)
最優(yōu)輸運(yùn)問題最早由蒙日(Gaspard
Monge)在他1781年的一篇著名文章中提及,這篇文章討論關(guān)于“挖(déblais)” 與
“填(remblais)”——尋求最優(yōu)的方式來輸運(yùn)與重組織給定分布的一定量的物質(zhì)。蒙日是畫法幾何與巴黎綜合理工學(xué)院之父,拿破侖之友,遠(yuǎn)見卓識的幾何分析專家。關(guān)于蒙日的更多信息,讀者可以參考étienne
Ghys
的美文(http://images.math.cnrs.fr/Gaspard-Monge.html)以及有關(guān)最優(yōu)輸運(yùn)的誕生的文章(http://images.math.cnrs.fr/Gaspard-Monge,1094.html)。值得一提的是,運(yùn)籌學(xué)專家說,這也是運(yùn)籌學(xué)中在某種意義上被解決了的最古老的問題。
由于蒙日問題的數(shù)學(xué)性質(zhì),可以考慮任何類型物質(zhì)的輸運(yùn)。在我深愛的書《最優(yōu)輸運(yùn):舊識與新知》(Optimal
Transport,old and new)中,作為對我曾經(jīng)最愛的蒙日面包店(Boulanger de
Monge)的敬意(哎,現(xiàn)在不是從前那樣了!),我采用了羊角面包。問題如下:假設(shè)你有一些散布在巴黎的面包店,每天生產(chǎn)羊角面包,同時(shí)又有一些咖啡店,同樣散布在各處,每天提供給消費(fèi)者新鮮羊角面包。面包店的生產(chǎn)量和咖啡店的銷售量都是已知的。每次一籃羊角面包從某面包店運(yùn)到一個(gè)咖啡店,根據(jù)不同的地理位置,有不同的輸運(yùn)費(fèi)用。怎樣分布面包店和咖啡店以使總運(yùn)費(fèi)盡可能最小呢?

《最優(yōu)輸運(yùn):舊識與新知》封面
這個(gè)問題也引發(fā)涉及經(jīng)濟(jì)利益的問題:例如,假設(shè)面包店向咖啡店的收費(fèi)依賴于運(yùn)費(fèi),則最好的定價(jià)方式是什么?俄羅斯數(shù)學(xué)家和經(jīng)濟(jì)學(xué)家列昂尼德·康托洛維奇(LeonidKantorovich),
難以分類的小說《紅色財(cái)富》[2]中英雄人物之一,按照這個(gè)角度研究了蒙日最小化問題。他實(shí)際上夢想設(shè)計(jì)一種理性價(jià)格理論——在他所工作的時(shí)代和地方,這幾乎相當(dāng)于向古拉格(前蘇聯(lián)勞改集中營)或處決表中預(yù)約地方。然而,由于康托洛維奇在關(guān)鍵的政府計(jì)劃中的用處而得以幸存,并在1975年獲得諾貝爾經(jīng)濟(jì)學(xué)獎(jiǎng)。
現(xiàn)在,最優(yōu)問題被稱為蒙日-康托洛維奇問題,
許多人都很熟悉它。被運(yùn)送的東西可能是物質(zhì),氣體分子或其他東西。在1998年的研討會上,我報(bào)告了Hiroshi
Tanaka的工作,其中討論的被運(yùn)送的物質(zhì)是稀薄氣體(模型)。Tanaka在70年代證明,如果給定兩種氣體分布,兩者按照某物理模型(確切地說,馬克斯韋爾分子的空間齊次玻爾茲曼方程)演化,則隨著時(shí)間的推移,一種分子分布輸運(yùn)到另一種分子分布的總費(fèi)用總是下降的。我把這個(gè)貢獻(xiàn)也寫入了我的第一本關(guān)于最優(yōu)輸運(yùn)的的書的7.5節(jié)中(http://cedricvillani.org/for-mathematicians/surveys-books#tot),也在我關(guān)于碰撞動(dòng)力學(xué)理論的綜述的4.2節(jié)中(http://cedricvillani.org/for-mathematicians/surveys-books#collisional)。

玻爾茲曼
在這次研討會的參與者中,有一位來自的德國的年輕數(shù)學(xué)家,F(xiàn)elix
Otto。那時(shí)他在申請美國加州大學(xué)圣巴巴拉分校的職位;后來他取得了波恩和萊比錫的位置。他已經(jīng)與Richard Jordan 和 David
Kinderlehrer做了非常原創(chuàng)性的工作:基于玻爾茲曼熵和最優(yōu)輸運(yùn)的熱方程的性質(zhì),給出了熱方程的新解釋。現(xiàn)在他在考慮進(jìn)一步將此推廣到擴(kuò)散型非線性方程。就如好的博士生應(yīng)該的那樣,我仔細(xì)地聽著,當(dāng)天晚上我還和Felix好好地討論了一番。

Felix Otto (1966-)
幾周之后,夏天,我在家中讀Michael
Ledoux的講義。那時(shí),Michael Ledoux正在寫他的有關(guān)集中性理論的書。Eric
Carlen,我的博士論文答辯委員會成員之一,曾建議我去找圖盧茲的Michael。我對第一次在寬廣的圖盧茲大學(xué)找路的艱難時(shí)刻仍然記憶猶新。Michael很有興致地想聽我有關(guān)玻爾茲曼方程的工作,還給我了這些講義,以滿足我對他的工作的好奇。

Michael Ledoux(1958-)
我在閱讀Michel的講義過程中,很驚訝于他的敘述的漂亮與優(yōu)美,一些東西吸引了我的注意:一些我熟悉的關(guān)鍵詞和關(guān)鍵概念出現(xiàn)了,最優(yōu)輸運(yùn)也在這里再次出現(xiàn)了。冥冥中我覺得這應(yīng)該和Felix的工作有些關(guān)系。只做了兩次嘗試,幾分鐘的時(shí)間,我就找到了其中的聯(lián)系。這是不多的可以改變一位研究者的命運(yùn)的寶貴的突發(fā)靈感……
我寫下一個(gè)綱要,將第一個(gè)結(jié)論發(fā)給Michel,Michel給了熱烈的響應(yīng)。我決定和Felix就此合作一篇文章。對我而言,這個(gè)合作是極其寶貴的,因?yàn)樽鳛閯偝龅赖臄?shù)學(xué)家,我的嚴(yán)格標(biāo)準(zhǔn)和寫作技巧都有待完善,而與Felix的合作是發(fā)展這些技巧的良好機(jī)會。我們只花了幾個(gè)星期就完成了我們的文章。(不過,另一項(xiàng)幾乎同時(shí)開始的合作,卻花了近10年的功夫,而且外加了兩位合作者來完成。)
在我們的論文中,我們得到了如下幾個(gè)結(jié)果(讓我們用幾個(gè)大名詞):
當(dāng)時(shí)我并未意識到,這是一個(gè)付出甚少的巨大豐收。論文投稿到《泛函分析雜志》,第二天就被Paul
Malliavin接受。Malliavin顯然比我們還更加感覺到我們的工作的重要性。事實(shí)上,這篇文章也成為我被引用得最多的論文。在某種意義上,這也是將導(dǎo)致對里奇曲率的新觀點(diǎn),以及里奇曲率界的綜合方法的一整套理論的起點(diǎn)。
故事在繼續(xù),有許多驚喜和合作;來自法國、加拿大、德國、意大利、日本、美國、俄羅斯、中國的研究人員都投身其中。另一件對我而言是決定性的事件是2004年與John
Lott在伯克利的相遇。就如Karl-Theo
Sturm在波恩所做的一樣,我們很明確地要研究里奇曲率的綜合理論。我們所定義的幾何,現(xiàn)在常常被稱為LSV空間(LSV =
Lott-Sturm-Villani)。看著你的名字變?yōu)槎x,總是令人有所觸動(dòng)的!這個(gè)故事也是我寫作我的《最優(yōu)輸運(yùn):舊識與新知》的契機(jī),這本書使我獲得了美國數(shù)學(xué)會頒發(fā)的杜布獎(jiǎng)(http://www.ams.org/profession/prizes-awards/ams-prizes/doob-prize)[3]。

我不打算過多敘述進(jìn)一步的發(fā)展,系統(tǒng)介紹可以參考我講座的講義《里奇曲率的綜合理論》。不過,讓我們回到前面的故事,抽取一些結(jié)論和建議,這或許對一些人有益。
第一: 你在研究中付出的努力并不總是最重要的;有的時(shí)候重要的只是在正確的地方有了正確的想法,與正確的人有聯(lián)系(正如價(jià)格并不總是由生產(chǎn)過程中投入的勞動(dòng)量來決定,盡管蘇聯(lián)政府會如此告訴康托洛維奇)。
第二: 對事物,即使不與你的領(lǐng)域直接相關(guān)的東西,保持好奇總是(或幾乎總是)有益的。Felix的報(bào)告,Michael的課程,都不屬于我的博士論文主題——?dú)怏w的動(dòng)力學(xué)理論。但我還是很感興趣。
第三:一個(gè)大的進(jìn)展不總是新的定理或結(jié)論。它可能是一個(gè)新的證明,或者一個(gè)新的看法。作為數(shù)學(xué)家,我們的工作不只是證明東西,更一般地,它提供更好的理解,這也可能依賴于新的觀點(diǎn)。
第四:研究,特別是基礎(chǔ)研究,是不可預(yù)測的:沒有人能夠預(yù)測到這種非歐幾何、最優(yōu)輸運(yùn)與熵的相遇(我也沒有預(yù)料到!)。但現(xiàn)在,這是一個(gè)很有成果的領(lǐng)域,也解決了該領(lǐng)域中的幾個(gè)大問題。
最后一個(gè)評論是關(guān)于研究的性質(zhì)。無疑,研究系統(tǒng)關(guān)心發(fā)表、基金、職位、科學(xué)管理機(jī)構(gòu)、研究策略、實(shí)驗(yàn)室網(wǎng)以及億萬計(jì)的美元、歐元、人民幣等。但最終,關(guān)鍵的時(shí)刻是,某處、某頭腦中、某個(gè)火花的點(diǎn)燃。整個(gè)復(fù)雜的研究生態(tài)系統(tǒng)的一個(gè)有意義的目的是,增加這種珍貴的、脆弱的、難以預(yù)測的種子急切地成長為完整發(fā)展的理論的機(jī)會。
[1]高木講座(Takagi
lectures)是日本以高木貞治(Teiji
Takagi,1875--1960)之名命名的講座,也是日本第一個(gè)以人名命名的講座。高木貞治被譽(yù)為日本現(xiàn)代數(shù)學(xué)第一人。高木講座自2006年開始,歷屆演講可以參考講座主頁http://www.kurims.kyoto-u.ac.jp/~toshi/jjm/JJM_HP/contents/jjm-takagi.htm。維拉尼是6月27-28日在東北大學(xué)(Tohoku
University)舉行的第15屆高木講座的三位演講人之一。
[2]Red Plenty,http://www.redplenty.com/Front_page.html,2012年弗朗西斯·斯布福特(Francis Spufford) 著。
[3]維拉尼獲得2014年度杜布獎(jiǎng)。這個(gè)獎(jiǎng)是哈爾莫斯(Paul
Halmos,1916-2006)及其夫人(Verginia Halmos)于2005年捐贈的,后為紀(jì)念杜布(Joseph L.
Doob)而改為杜布獎(jiǎng)。哈爾莫斯是杜布的第一位博士生。杜布于1932年從哈佛大學(xué)獲得博士學(xué)位,三年后加入伊利諾伊斯大學(xué)直至于1978年退休。他的研究領(lǐng)域是概率論,曾在1963-64年任美國數(shù)學(xué)會主席,1984年
“因其在使概率論成為數(shù)學(xué)的一個(gè)分支中的基礎(chǔ)工作”而獲美國數(shù)學(xué)會Steele獎(jiǎng)。

? 2025. All Rights Reserved. 滬ICP備2023009024號-1