2018年AP考試第一科就要開(kāi)始進(jìn)行了,相信大家已經(jīng)準(zhǔn)備的差不多了,我們?cè)賮?lái)一起回顧一下AP考試化學(xué)部分的重要內(nèi)容。
2018年AP化學(xué)的考試時(shí)間是2018年5月7日上午7:30。
2014年AP化學(xué)改革后,AP化學(xué)的知識(shí)構(gòu)架由原來(lái)的二十幾個(gè)知識(shí)點(diǎn)章節(jié),統(tǒng)一歸納成6大知識(shí)點(diǎn)(6 Big Ideas)。具體如下:
Big Idea#1是化學(xué)學(xué)習(xí)的基礎(chǔ),講了原子和元素并引申到了物質(zhì)的構(gòu)成。
The chemical elements are fundamental building materials of matter, andall matter can be understood in terms of arrangements of atoms. These atomsretain their identity in chemical reactions.
Big Idea#2是物質(zhì)構(gòu)成的核心,講了物質(zhì)構(gòu)成中的化學(xué)鍵和理想氣體。
Chemical and physical properties of materials can be explained by thestructure and the arrangement of atoms, ions, or molecules and the forcesbetween them.
Big Idea#3是傳統(tǒng)考試的重點(diǎn),講了化學(xué)反應(yīng)中的電子轉(zhuǎn)移和能量變化。
Changes in matter involve the rearrangement and/or reorganization of atomsand/or the transfer of electrons.
Big Idea#4是抽象知識(shí)的難點(diǎn),講了化學(xué)反應(yīng)的機(jī)理和化學(xué)反應(yīng)速率。
Rates of chemical reactions are determined by details of the molecularcollisions.
Big Idea#5是承上啟下的關(guān)鍵,講了物質(zhì)能量的變化和熱力學(xué)原理。
The laws of thermodynamics describe the essential role of energy andexplain and predict the direction of changes in matter.
Big Idea#6是計(jì)算考察的必考,講了化學(xué)平衡以及相關(guān)能量變化。
Any bond or intermolecular attraction that can be formed can be broken.These two processes are in a dynamic competition, sensitive to initialconditions and external perturbations.
美國(guó)大學(xué)理事會(huì)在改革后對(duì)所考察知識(shí)點(diǎn)的具體范圍,深度都做出了較為明確的要求,針對(duì)每個(gè)知識(shí)點(diǎn)(Big Idea)要求掌握不同的基本知識(shí)點(diǎn)(Essential Knowledge)和達(dá)到明確的學(xué)習(xí)目的(LearningObjective)。
建議學(xué)習(xí)中首先需要弄清楚每個(gè)知識(shí)點(diǎn)要求掌握的學(xué)習(xí)目的(Learning Objective)。學(xué)習(xí)中需要將學(xué)習(xí)目的(Learning Objective),基本知識(shí)點(diǎn)(EssentialKnowledge)和6大方向(6 Big idea)等內(nèi)容進(jìn)行串聯(lián),形成知識(shí)網(wǎng)絡(luò)才能達(dá)到良好的學(xué)習(xí)效果。
2. AP化學(xué)的考試題型和分?jǐn)?shù)分布
AP化學(xué)的試卷結(jié)構(gòu)和分?jǐn)?shù)分布
| AP化學(xué) | ||||
| 題型 | 數(shù)量 | 答題時(shí)間 | 原始分?jǐn)?shù) (需轉(zhuǎn)換為百分制) | 分?jǐn)?shù)權(quán)重 (百分制兩部分各占一半分?jǐn)?shù)) |
| 第一部分: 單選題 | 60 | 90分鐘 | 60 * 1分/題=60分 | ?50% |
| 第二部分:簡(jiǎn)答題 | 3(長(zhǎng)) | 90分鐘 | 無(wú)固定分?jǐn)?shù)(每道題4-13分不等)
|
?50% |
| 4(短) | ||||
注:考場(chǎng)上,AP化學(xué)考試的總答題時(shí)間為3個(gè)小時(shí),中間休息10分鐘。單選題和簡(jiǎn)答題兩部分是分開(kāi)進(jìn)行的。單選題考完要收回答題卡和試卷冊(cè),中間休息后發(fā)簡(jiǎn)答題的試卷冊(cè)。所以考生不能用簡(jiǎn)答題的答題時(shí)間回答單選題。化學(xué)公式表兩部分題目都可以使用,但計(jì)算器只能在簡(jiǎn)答題部分使用。
AP化學(xué)考試百分制分?jǐn)?shù)與5分制的轉(zhuǎn)化表:
| AP化學(xué)原始分 | AP化學(xué)5分制的分?jǐn)?shù) |
| 75-100分 | 5分 |
| 62-74分 | 4分 |
| 50-61分 | 3分 |
| 39-49分 | 2分 |
| 0-38分 | 1分 |
注:AP化學(xué)的成績(jī)?yōu)?分制,每年的分?jǐn)?shù)都是以曲線分布來(lái)計(jì)算,稱之為5分曲線(a Five-point Grade Scale)。以大學(xué)理事會(huì)公布的2011年數(shù)據(jù)為例,16.2%的應(yīng)試者得5分(Best),18.5%的應(yīng)試者得4分,19.6%的應(yīng)試者得3分,14.8%的應(yīng)試者得2分和30.9%的應(yīng)試者得1分。這個(gè)分布比例并不是一成不變的,大學(xué)理事會(huì)會(huì)根據(jù)每年的考試情況將分布比例進(jìn)行調(diào)整。
3. 命題方向
改革后全球范圍內(nèi)得5分4分比例明顯減少。而對(duì)中國(guó)學(xué)生來(lái)說(shuō),更是一個(gè)巨大的挑戰(zhàn)。就整個(gè)趨勢(shì)來(lái)看,AP改革將考試難度從計(jì)算方向調(diào)整到了概念化理解方向。刪減了不少中國(guó)學(xué)生的強(qiáng)項(xiàng)計(jì)算題,轉(zhuǎn)而側(cè)重實(shí)驗(yàn)題,圖像理解題,概念應(yīng)用題,而這部分恰恰是中國(guó)學(xué)生的薄弱環(huán)節(jié)。試卷中的圖形表格數(shù)量遠(yuǎn)遠(yuǎn)高于去年考試,一道題目的閱讀量也增加了20%左右,所以怎么更快更好的讀懂題成為的必須解決的問(wèn)題。要求學(xué)習(xí)過(guò)程中一定要把概念原理理解透,并且能應(yīng)用到實(shí)驗(yàn)分析中才行。
知識(shí)點(diǎn)的重點(diǎn)和難點(diǎn):
化學(xué)平衡:此部分為每年的必考內(nèi)容,分清楚 Keq,Q, Ka,Kb,Kw和Ksp 分別代表的化學(xué)平衡的意義。根據(jù)平衡公式進(jìn)行溶液濃度的計(jì)算,部分情況下涉及到滴定實(shí)驗(yàn),多考察酸堿滴定部分,考題多于不同物質(zhì)的量的滴定溶液的PH值的圖像相結(jié)合。
電化學(xué):容易混淆電解池和原電池的基本概念,根據(jù)氧化還原反應(yīng)的基本原理判斷陰極和陽(yáng)極以及對(duì)應(yīng)的半反應(yīng),陰極得電子發(fā)生還原反應(yīng),陽(yáng)極失電子發(fā)生氧化反應(yīng)。原電池?zé)o外接電源,根據(jù)標(biāo)準(zhǔn)還原電動(dòng)勢(shì)計(jì)算原電池電動(dòng)勢(shì)。根據(jù)電動(dòng)勢(shì)計(jì)算吉布斯自由能。
熱力學(xué):焓變與熵變基本概念要理解區(qū)分,在不同條件下,計(jì)算未知反應(yīng)的焓變,可以通過(guò)鍵能,標(biāo)準(zhǔn)反應(yīng)生成焓,漢斯定律等。在焓變和熵變基礎(chǔ)上計(jì)算吉布斯自由能。
以下是各個(gè)部分的要點(diǎn):
1. Black body radiation—undermine classical physics--Mac Plank E=hv -- photoelectric effect
2. Spectra: continuous spectrum(all color), emission lines spectra(color with special energy are on the spectra), absorption spectra (black lines, reverse of emission lines)
3. En=-Rn(1/n^2) 1/wavelength=Rh(1/(n1)^2-1/(n2)^2)
4. For one electron atoms or ions: Bohr Model (classic physics+ Rutherford model+ quantum theory)
(1)angular momentum(energy) is quantized, electron in orbit radiate no energy
(2)photon-excitization-excited state-move back-electromagnetic radiation
(3)e can exist in possible circular orbit with fixed radius
5. E=-2.18*10^-18/n^2
6. First ionization energy of H: 2.18*10^-18
7. wave and particle duality: De Broglie wavelength=h/p=h/mv=10^-10m
8. Heisenberg uncertainty principle: dx*dp>=k/4pi. It is impossible to determine position and momentum at the same time.
9. Wave mechanical model:
(1)calculate possible energy states and positions
(2) Quantum number and wave function (probability of locating an e in a region in space)
10. Quantum numbers:
(1) principle quantum number: n, determine size and energy of orbital
(2) angular momentum number: l (0——n-1) shape of orbital
(3) magnetic quantum numbers: ml (-l——l) orientation
(4) Spin quantum number: ms=+-1/2 spin
11. when Z>1 : nuclear charge is greater, e and e repulsion, penetration (cause of fraction Zeff)
1. Group1: alkali metal, group2:alkali earth metal, group5:pnictogens(stifle), group6: chalcogens (elements to make ore), group7:halogen, group8: noble gas
2. Transition metal: 3-12. Inner transition element: actinides and lanthanides
3. Metallic character decreases from Fr to F
| metal | non metal |
| reducing agent | oxidizing agent |
| heat/electric conductivity | no heat/electric conductivity |
| shiny | not shiny |
| hard | soft |
| Ductile , compressible | not ductile, compressible |
| delocalized e | no delocalized e |
| basic oxide | acidic oxide |
4. Semimetal: conduct electricity and very low temperature, superconductor
5. D-block: colored compound, complex ion, many oxidation states, magnetic properties, catalysis
6. Atomic radius: increase down a group because: valence n increases, valence e further from nucleus, an extra full shell repels other e to make it bigger
Decrease across a period because: e is added to the same valence shell, shielding by inner shell is constant, Zeff increases so valence e is pulled closer
7. Radius of ions: cation is smaller and anion is bigger.
8. Electronegativity: ability of a bonded atom to attract a shared pair of e.
9. Down a group and En decreases because atoms have bigger radius. Across a period En increases because atom is smaller and Zeff increases.
10. Ionization energy: first ionizing energy: E(g)-E+(g)+e- second ionizing energy: E(g)-E2+(g)+2e-
11. Down a group IE decreases as radius increases and nuclei have less attraction of valence electron, across a period IE increases as Zeff increases, attraction increases and it is harder to pull a e away. Small trend because e is spinning paired and repulsion exist between 2e in the same orbital
12. Successive ionization energy: pick 1 element and takes away its electrons one by one, the jump of energy is orbital because: when there is less e, more attracted to nucleus, repulsion is smaller with less e, when removed a shell, it is harder to move another e as it is closer to the nucleus
13. Electron affinity: first EA: E(g)+e—E-(g)
14. Trends are not clear but basic trends are: down a group less negative as radius increases-attraction decreases-less energy released, across a period more negative as Zeff increases-attraction increases-energy released increases.
15. Group1: lowest 1stIE in periodic table, slightly negative EA, keen to give up e but weakly to accept e
16. Group7: high1stIE, high negative EA, lose e with difficult but gain easily
17. Group8: very high 1stIE, slightly positive EA, tend not to lose or gain e easily.
1. Reason of bond: electrostatics, lower their energy
2. Bond: covalent(non-metal and non-metal), ionic(non-metal and metal), metallic(metal and metal)
3. Lewis theory: octet rule. Every atom tens to have 8 e. discovered by noble gas
4. Lattice energy: a measure of strength of attraction between ions Na(g)+ Cl(g)- NaCl(s) unit is KJ/mol. Measured in born-haber cycle(chemical way) and born-mayer cycle(LE=k(Z+*Z-)/r)
1. giant 3-D lattice
2. Hydration energy: energy used to make ions in water completely surround by a shell of water molecule. When LE<HE, soluble. Bigger radius, more electrons, higher HE. Endothermic dissolve is caused by entropy, like NH4NO3. HE is decided by Z and r.
3. High melting point and boiling point: it is hard to make ions vibrate so harder to pull them apart.
4. Conduct electricity: when molten or dissolved in water because ions can mobile
5. Brittle: when hit, cation and cation (anion and anion) will move and repel each other.
1. low melting point and high boiling point: it is easy to pull metal atoms apart but it is hard to completely separate an atom
2. good thermo and electric conductivity: mobile e-
3. luster
4. Malleable and ductile: forces of attraction are not broken. Ion slide over each other but still held together
5. melting point increases when Z increases: more e- and less radius
1. bond length and strength: long the bond, weaker it is
2. bond energy is measured in KJ/mol
3. poor conduction of electricity: no delocalized e- (except graphite)
4. melting point and boiling point: - giant lattice: high because hard to break bond -molecular solid: low because IMF is weak
5. diamond: -hard: 3D interlocking of covalent bond -not conduct electricity: all valence e is used in bond
6. Graphite: -conduct electricity: delocalized e -soft weak: LDF between layers are easy to overcome by force.
1. Contains complex ion and counter ion. Ex: [Co(NH3)6]3+(complex ion) + Cl-(counter ion)
2. ligand: provide both electron for covalent bond so must have lone pairs. Are around transition metal in complex ion.
3. name: name cation first, include oxidation state of cation, then name anion ex: hexaamminecobalt(iii) chloride
4. Formation reason: d orbital of metal is empty and overlap with electron orbital of ligand.
5. dative bond: a covalent bond In which the pair of e- is supplied by one of the 2 balanced atoms (Lewis base provides e- while Lewis acid do not)
1. Decide Lewis structure: -formula –central atom(one with lowest EN except H) –count e- -draw skeletal structure –add e-
2. electron deficient compound may violent octet rule ex: BF3
3. Formal charge: the electric charge an atom would have if all bonding electrons were shared equally with its bonded neighbor. Normally between -1 and +1
4. resonance is actually delocalized pi-bonds
5. Bond order: the bonds between two atoms, resonance are calculated by taking average
1. VSEPR theory: valence e- pairs repelling to minimize energy of molecule or polyatomic ion. Valence e- maximizes distance apart and determine the shape of molecules.
2. geometry shape:
| type | # of bond | # of lone pairs | compound |
| linear | 2 | 0 | CO2 |
| trigonal planar | 3 | 0 | BF3 |
| bent | 2 | 2 | H2O |
| tetrahedral | 4 | 0 | CH4 |
| trigonal pyramid | 3 | 1 | NH3 |
| trigonal bipyramid | 5 | 0 | PCl5 |
| t-shape | 3 | 2 | BrF3 |
| octahedral | 6 | 0 | SF6 |
| see-saw | 4 | 1 | SeF4 |
| pentagonal bipyramid | 7 | 0 | TF7 |
| pyramid | 5 | 1 | IF5 |
| square planar | 4 | 2 | XeF4 |
3. all lone pairs are not include in the geometry shape
4. hybridization: (1)sp linear BeH2 (2) sp2 trigonal planar BF3 (3) sp3 tetrahedral (4)sp3d trigonal bipyramid PCl5, XeF2 (5)sp3d2 octahedral SF6, XeF4O, XeF4
5. molecular orbital theory: explains resonance like benzene
6. polarity:
(1) non polar: no permanent polarity, no dipole
(2) Polar: delta EN not zeros
7. Intermolecular forces:
(1)LDF electron fast moving causes temporary dipole. Down a group stronger because of more electrons (more polarizable) and bigger(less attraction of electron), more surface area contact stronger
(2) Hydrogen bond: because of (a)highly EN FONCl(b) no inner shells in H(c) small size of FONCl
(3) Ion dipole: ion + polar mole
(4) dipole-dipole
| attraction forces | ||
| ion present | no ions | |
| ions only | polar only | non polar only |
| ionic bond | dipole-dipole | LDF
|
8. Like dissolves like: polar-polar force to overcome lattice energy, non polar- non polar because of entropy and enthalpy.
1. Pressure:1.01*10^5Pa=1atm=760mmHg
2. Temperature: K=C+273.15
3. Boyle’s law: PV=k(n,T is kept constant) Charle’s law: V=kT(P,n is kept constant) Avogadro’s law: V=kn(P,T is kept constant)
4. Kinetic molecular theory: assume(1)volume is neglectable (2) no IMF (3)elastic collision (4) average KE=T
5. Peak of number of molecule vs speed graph is approximately average KE
6. m1/m2=average v2^2/average v1^2 v1/v2=√m2/m1
7.Graham’s law of diffusion :average KE=1.5RT=0.5MV^2(for 1 mol) average v=√3RT/Mr (root-mean-square speed)
8. Real gas: tend to act like ideal gas when: T is high and P is low
9. (P+an^2/v(volume)^2)(V-bn)=nRT
1. collision theory: reaction is caused by collision with right orientation and enough Ea
2. -surface are increases: more probable of successful collision -temperature increases: more molecules with energy more than Ea
3. Archenius k=Ae^(-Ea/RT) A is pre-exponential constant R=8.314J/mol*K
4. rate= k[A]
5. Ea= Rln(k2/k1)/[(1/t1)-(1/t2)]
6. Reaction profile: for a chemical reaction Ea is fixed. Transition state is the state with highest PE, catalyst will decrease Ea without affecting delta H
7. r= k[A]^x*[B]^y*[C]^z x,y,z are the orders with respect to A,B,C
8. Initial rate method: (a)vary [a] and keep others constant and then (b) vary [B] and keep others constant. Log r= log k +x*log[A]i
9. mechanism: many simples steps together to form a reaction
10. intermediate: produced in one step and consumed in another
11. one can check if his mechanism is correct by finding intermediates.
| particle emitted | change of mass | change of charge | |
| alpha decay | 2 proton and 2 neutron | -4 | -2 |
| beta decay | 1 electron | not change | 1 |
| gamma decay | 1 photon | not change | not change |
Different power of abilities of different rays
| ionizing | penetrating | |
| alpha ray | high | low |
| beta ray | low | middle |
| gamma ray | high | very high |
(1) Alpha:?harmless, cannot penetrate skin
(2) Beta:?high, can harm bones, organs
(3) Gamma:?high, will ionize molecules can cause them to repeal each other
(1) Fission:?one nuclear becomes more than one particle, like U235
(2) Fusion:?two or more nuclei combine to become one nuclear
知識(shí)點(diǎn):
1)ΔS, ΔH, ΔG的含義和在標(biāo)準(zhǔn)非標(biāo)準(zhǔn)狀態(tài)的正負(fù)值/定量運(yùn)算,尤其是ΔH,那么多算法,你懂的。
2)關(guān)于熱容、比熱容、ΔG =ΔH - TΔS這些公式的運(yùn)算和正負(fù)值含義。
3)熟練掌握酸堿的三種分類法,包括秒找共軛對(duì),強(qiáng)/弱酸堿的判定,鹽的弱酸/堿性判定,緩沖溶液的構(gòu)成和作用原理。
4)能結(jié)合應(yīng)用氧化數(shù)的增減和LEO & GER口訣,隨手拆出兩個(gè)半反應(yīng)方程式,知道金屬活動(dòng)性和氧化電動(dòng)勢(shì)正相關(guān)。
5)理解酸堿滴定曲線的圖像變化,從而適當(dāng)選擇指示劑;了解兩種電池的運(yùn)作原理;能夠熟練判斷電池兩極,及其裝置用途和實(shí)驗(yàn)現(xiàn)象。
計(jì)算出題點(diǎn):
1)強(qiáng)/弱酸、強(qiáng)/弱堿、非中性鹽、緩沖溶液、滴定過(guò)程中某一時(shí)刻的pH, pOH, Ka, Kb,某離子濃度的運(yùn)算,全都要會(huì),沒(méi)商量。
2)會(huì)算轉(zhuǎn)移電子數(shù),兩種電池的標(biāo)準(zhǔn)/非標(biāo)準(zhǔn)電池電勢(shì);用法拉第公式計(jì)算轉(zhuǎn)移電量和電流;用Nernst Eq.把ΔG,Keq, Q,和Ecell聯(lián)立解決,包括Q=K或者T=298K這些特殊情況下的簡(jiǎn)化公式。
下面是各個(gè)重點(diǎn)部分的要求和重點(diǎn)習(xí)題:
原子, 核化學(xué)
知識(shí)點(diǎn):
1)了解Dalton,Thomson, Millikan, Rutherford探索原子結(jié)構(gòu)時(shí)的主要手段和成果;熟悉Bohr模型和L.de Broglie波粒二相性的理論和相關(guān)公式, 會(huì)用Heisenberg測(cè)不準(zhǔn)原理解釋原子結(jié)構(gòu)。
2)能懂且會(huì)用四個(gè)量子數(shù)表示電子排步。
3)理解Pauli, Aufbau, Hund, Energy Overlay這四條電子排步原則,熟記各條反例,如Cr, Cu, Mo, Ag這些半滿軌道排步。
4)能解釋原/離子半徑、電離能、電親和勢(shì)、電負(fù)性的周期性遞變?cè)颍皇煊泂/p-block、半金屬元素的符號(hào)縮寫(xiě)和英文全拼。
5)牢記核衰變反應(yīng)的定義,各類核反應(yīng)釋放出的微粒or射線實(shí)質(zhì);熟練配平反應(yīng)式和計(jì)算半衰期。
題?[Multiple Choice (MC)選自Barron’s 2009 ed., Free Response (FR)選自歷年真題]:
MC: Chp.1 –Question (Q#) 10,12, 13, 15, 22; Chp.2 -Q6, 9, 13, 14; Chp.3 –Q1-3, 5, 7, 9。
FR: 2010年Q6 (a-c), 2007年Form B Q2、Q7 (a-c (i) ),2006年Form B Q7 (a, c,d)。
分子內(nèi)的鍵和分子間的力,一丟丟化學(xué)運(yùn)算題
知識(shí)點(diǎn):
1) 能判別離子、金屬、共價(jià)鍵,以及分析前兩者強(qiáng)弱。
2)會(huì)畫(huà)共價(jià)化合物的Lewis dot structure ,20秒一個(gè)。能從重疊方式不同解釋sigma和pi鍵的區(qū)別,知道鍵級(jí)、鍵能、鍵長(zhǎng)的聯(lián)系。
3)能用VBT解釋共價(jià)鍵實(shí)質(zhì),用HOT解釋中心原子如何雜化,用VSEPR解釋成鍵電子/孤對(duì)電子間如何排斥并占據(jù)空間。
4)能分析出且熟記成鍵電子數(shù)?+ 孤對(duì)電子數(shù)小于等于六時(shí)的各種空間構(gòu)型,包括中心原子的軌道雜化方式、幾何體名稱、鍵角、分子極性。
5)根據(jù)極性不同判斷出三類分子間作用力,知道其強(qiáng)弱各自受哪些因素影響,以及它們的相對(duì)強(qiáng)弱。
6)掌握化合價(jià)配平法,半分鐘一個(gè)式子;關(guān)于mole運(yùn)算、經(jīng)驗(yàn)/分子式、凈離子方程式...這些初中就開(kāi)始練的題,怎么還好意思錯(cuò)呢。
題:
MC: Chp.5 – Q10, 11, 13, 14;Chp.6 – Q5, 14, 17, 18, 20
FR: 2014年FormB Q5,2012年 Q4, 2006年Q7 (a-b), 。
物質(zhì)的氣、液態(tài)與變相
知識(shí)點(diǎn):
1) 靈活應(yīng)用氣體分子的總/平均動(dòng)能計(jì)算公式,以及可愛(ài)的Graham’sLaw, 知道由PV=nRT推出來(lái)的系列公式所對(duì)應(yīng)的不同恒定量假設(shè)。
2)牢記理想氣體的三個(gè)假設(shè)及其宏觀影響、Vander Waal’s Eq.里a、b的對(duì)應(yīng)含義,會(huì)應(yīng)用氣體分壓概念進(jìn)行各種定量運(yùn)算。
3)能找出三相圖、加熱/冷卻曲線圖里的各種特殊點(diǎn)或線,尤其特殊的水。
4)了解溶液和電解質(zhì)的定義,牢記濃度的兩種表達(dá)方式、四個(gè)colligativeproperties的含義和定量計(jì)算。
5)牢記可溶物和難溶物各自的溶解規(guī)律及溶解度表示,理解Ksp和同離子效應(yīng)的定量運(yùn)算。
題:
MC: Chp.7 – Q8, 19, 20;Chp.8 – Q3, 13-16; Chp.9 – Q14, 17, 18, 20, 21。
FR: 2014年Q1、Q4 (a-b), 2013年Q1, 2012年 Q2 (a-e), 2011年 Form B Q2 (a-c), 2010年Q1。
反應(yīng)的速率與平衡
知識(shí)點(diǎn):
1)熟練運(yùn)用實(shí)驗(yàn)法找出任一反應(yīng)的Rate Law, 任一反應(yīng)物的rxn order,k的數(shù)值和單位,熟記0,1,2級(jí)反應(yīng)的對(duì)應(yīng)的公式和各種表達(dá)圖像,理解線性圖像的特殊意義。
2)應(yīng)運(yùn)碰撞理論和ArrheniusEq.分析反應(yīng)速率;牢記激活能、反應(yīng)物濃度、溫度、壓強(qiáng)與反應(yīng)速率的正負(fù)相關(guān)性。
3)理解基元反應(yīng)的molecularity概念,會(huì)用多步反應(yīng)中slow-determining step的反應(yīng)機(jī)制替代總反應(yīng)機(jī)制 。
4)牢記平衡常數(shù)的定義式,熟練掌握8種特殊情況下的Keq計(jì)算法。
5)熟練應(yīng)用LeChatelier’s Law, 分分鐘解釋Haber process。
題:
MC: Chp.11-Q6, 8, 13,17,20, 22; Chp.10 –Q7, 9,13,17, 19
FR: 2012年 Q3(d-f), 2011年Q6 (c-d), 2010年FormB Q3 (c-f)。
熱力學(xué),酸堿和氧化還原反應(yīng)
知識(shí)點(diǎn):
1)ΔS, ΔH, ΔG的含義和在標(biāo)準(zhǔn)非標(biāo)準(zhǔn)狀態(tài)的正負(fù)值/定量運(yùn)算,尤其是ΔH,那么多算法,你懂的。
2)關(guān)于熱容、比熱容、ΔG=ΔH - TΔS這些公式的運(yùn)算和正負(fù)值含義。
3)熟練掌握酸堿的三種分類法,包括秒找共軛對(duì),強(qiáng)/弱酸堿的判定,鹽的弱酸/堿性判定,緩沖溶液的構(gòu)成和作用原理。
4)能結(jié)合應(yīng)用氧化數(shù)的增減和LEO & GER口訣,隨手拆出兩個(gè)半反應(yīng)方程式,知道金屬活動(dòng)性和氧化電動(dòng)勢(shì)正相關(guān)。
5)理解酸堿滴定曲線的圖像變化,從而適當(dāng)選擇指示劑;了解兩種電池的運(yùn)作原理;能夠熟練判斷電池兩極,及其裝置用途和實(shí)驗(yàn)現(xiàn)象。
題?(這天以知識(shí)點(diǎn)為主,題不多,明天集中刷定量計(jì)算):
MC: Chp. 12-Q9-11, 12, 13,14
FR: 2014年 Q6(c), 2013年Q3, 2012年Q3
酸堿和電化學(xué)的計(jì)算
計(jì)算出題點(diǎn):
1)強(qiáng)/弱酸、強(qiáng)/弱堿、非中性鹽、緩沖溶液、滴定過(guò)程中某一時(shí)刻的pH, pOH, Ka, Kb,某離子濃度的運(yùn)算,全都要會(huì),沒(méi)商量。
2)會(huì)算轉(zhuǎn)移電子數(shù),兩種電池的標(biāo)準(zhǔn)/非標(biāo)準(zhǔn)電池電勢(shì);用法拉第公式計(jì)算轉(zhuǎn)移電量和電流;用NernstEq.把ΔG,Keq, Q,和Ecell聯(lián)立解決,包括Q=K或者T=298K這些特殊情況下的簡(jiǎn)化公式。
題:下方高能預(yù)警!
MC: Chp.14-Q4, 5, 9, 22,24; Chp.13-Q12, 13, 16, 18, 22
FR: 酸堿> 2014年Q2, 2012年Q1, 2011年FormB Q1, 2011年Q1, 2010年Form B Q5。氧化還原> 2014年Q3, 2013年Q2, 2012年Q6, 2010年FormB Q2。
烴與官能團(tuán),實(shí)驗(yàn),和昨天沒(méi)搞完的題
知識(shí)點(diǎn):
1)熟記鏈/環(huán)狀烴的基本定義,命名規(guī)律,結(jié)構(gòu)通式。
2)熟悉八種官能團(tuán)的命名規(guī)律,構(gòu)成,是否有氫鍵,極性分析。
3)熟悉有機(jī)酸與醇的中和反應(yīng),聚合/裂解反應(yīng)。
4)理解實(shí)驗(yàn)誤差,熟悉溶液稀釋和酸堿滴定操作流程、兩種電池的原理& 裝置 & 現(xiàn)象,集中記憶焰色反應(yīng)、過(guò)渡金屬溶液顏色、常見(jiàn)氧化劑溶液顏色。
最后,祝大家在2018年SAT和AP考試中取得好成績(jī)!

? 2025. All Rights Reserved. 滬ICP備2023009024號(hào)-1