提到AP微積分,可以說是最受中國考生歡迎的科目了,也是AP理科中的5分率王者之一。很多學微積分的同學一開始就是沖著5分去的,然而,考試本身還是有一定難度的,畢竟一年只有這么一次考試機會!
今年的微積分考試時間在5月9日 8 a.m.,時間緊迫,大家要抓緊身邊所有可用資源充分備考!
說到AP考試,MCQ和FRQ里肯定是FRQ最讓大家頭疼——題干又臭又長、要求又多又繁瑣,考試范圍靈活,難題、怪題、偏題層出不窮。而且,這么難的FRQ,在考試中的分值比重還很高!可以稱得上是5分路上的絆腳石了。
不過大家不要被困難絆倒,這里給大家準備了兩道微積分FQR題,快來檢測一下你對FRQ題型的熟悉程度以及對知識點的掌握度~

解析:
我們先來看題目給的條件:
1) 0至4的閉區間f有定義
2) f的一次導
(a)問的是在哪個區間f是增長的,我們知道[f increasing→f'>0][f decreasing→f'<0]。所以現在用圖形計算器畫出f'的圖像,大概找出在0至4的閉區間的范圍內,f'=0和f'>0的分界點。

通過畫圖(如上圖)我們得出,在大概0.282和3.758的區域內,f'>0。用到圖形計算器的求解功能,我們可以較準確地算出前面的區間在保留三位小數后是(0.283,3.760)。答案就是:On the open interval between 0.283 and 3.760, f is increasing.
(b)問x是什么值時,f有局部極大值。
注意與globalmaximum 區分:一個函數可有多個local max/min,但是只可有一個global max/min。
看回剛剛用圖形計算器畫的圖,我們知道,在(0,0.283)區間,f值減小;在(0.283,3.760)區間,f值增大;在(3.760,4)區間,f值減小。看著f'圖在三個區間所包圍的面積來看,在(0.283,3.760)區間包圍的正面積最大,所以在當x=3.760時,f有最大值。答案就是:f has a local maxima when x=3.760
(c)問的是,在圖上有幾個拐點。
Inflection point就是函數改變concavity的時候:例如從concave up(f''>0)變成concave down(f''<0)。這道題只問了數量,并沒有問確切的位置,所以步驟相對簡便。
可以看出,在f'的x=a,x=b, 和x=c前后的地方,f''發生了變化。0到a這一段f''>0;a到b這一段f''<0;b到c這一段f''>0;c到4這一段f''<0.因為f''發生了三次變化,所以一共有三個inflection point。答案就是:f has 3 inflection points.
(誤區:不小心把f'的圖當成了f的圖像,直接找concave up/down的圖
希望通過以上的練習,大家能對微積分FRQ的題目設置和易錯點有了更清晰的認識。
掃碼添加翰林顧問老師,可一對一制定國際課程規劃
【免費領取】AP 備考資料合集~


? 2025. All Rights Reserved. 滬ICP備2023009024號-1