| 年份 | 2015 |
| 學科 | 能源物理 Energy: Physical |
| 國家/州 | United State of America |
Novel Automated Designs and Rapid Multivariate Optimization of Next-Generation Multijunction Quantum Dot Solar Cells Using Monte Carlo Modeling
Large-scale adoption of solar power is limited by high cost compared to fossil fuel-based power generation. Multijunction quantum dot solar cells offer a potential high-efficiency, low-cost solution. Despite high performance in quantum dot solar cells (QDSCs), lead sulfide quantum dots (QDs) have not been thoroughly studied in multijunction solar cells. To optimize multijunction QDSC efficiency by characterizing photon-quantum dot interactions, quantum mechanically cloud-computed absorption spectra of lead sulfide QDs of various diameters and the solar radiation spectrum on Earth’s surface were incorporated into Java-programmed Monte Carlo simulations implementing novel algorithms. Algorithms were developed and executed to quantify photon absorption-electricity conversion synergy. After thousands of hours of computation, 6,132 multivariate simulations were conducted spanning design permutations for 1- to 9-junction QDSCs of constant solar cell thickness for various QD diameters and bandgap standard deviations. Solar spectral changes and optimal energy conversion efficiencies were tracked as photons passed through junctions. A program was written to automatically sort through the efficiency results, taking into consideration the thermodynamic model proposed by De Vos et al. Computed optimized efficiencies were 39.2%, 51.5%, 57.7%, 62.8%, 64.5%, 66.7%, 68.1%, 68.4%, and 68.7% for 1- to 9-junction QDSCs under concentrated sunlight, compared to the 33.7% Shockley-Queisser limit of conventional solar cells. This work constructed and demonstrated a novel methodology using computation to rapidly achieve optimal designs for multijunction QDSCs. Wider application of this technique could enable and significantly accelerate multijunction QDSC development and adoption.
高中生科研 英特爾 Intel ISEF
資訊 · 課程 · 全程指導
請掃碼添加微信好友

[vc_btn title="聯系電話:(021) 63526628" color="black" align="center" css_animation="fadeIn" link="url:tel%3A02163526628||target:%20_blank|rel:nofollow"]
英特爾國際科學與工程大獎賽,簡稱 "ISEF",由美國 Society for Science and the Public(科學和公共服務協會)主辦,英特爾公司冠名贊助,是全球規模最大、等級最高的中學生的科研科創賽事。ISEF 的學術活動學科包括了所有數學、自然科學、工程的全部領域和部分社會科學。ISEF 素有全球青少年科學學術活動的“世界杯”之美譽,旨在鼓勵學生團隊協作,開拓創新,長期專一深入地研究自己感興趣的課題。
>>> 實用鏈接匯總 <<<
· 數學 · 物理 · 化學 · 生物 · 計算機 · 工程 ·
Studies of renewable energy structures/processes including energy production and efficiency.
Hydro Power?(HYD):?The application of engineering principles and design concepts to capture energy from falling and running water to be converted to another form of energy.
Nuclear Power?(NUC):?The application of engineering principles and design concepts to capture nuclear energy to be converted to another form of energy.
Solar?(SOL):?The application of engineering principles and design concepts to capture energy from the sun to be converted to another form of energy.
Sustainable Design?(SUS):?The application of engineering principles and design concepts to plan and/or construct buildings and infrastructure that minimize environmental impact.
Thermal Power?(THR):?The application of engineering principles and design concepts to capture energy from the Earth’s crust to be converted to another form of energy.
Wind?(WIN):?The application of engineering principles and design concepts to capture energy from the wind to be converted to another form of energy.
Other?(OTH):?Studies that cannot be assigned to one of the above subcategories.?If the project involves multiple subcategories, the principal subcategory should be chosen instead of Other.

? 2025. All Rights Reserved. 滬ICP備2023009024號-1