男人资源站-涩涩五月天-加勒比一区二区-欧美丰满少妇-清纯唯美亚洲-蜜臀久久99精品久久久久宅男-1024手机在线观看-a免费在线观看-日韩一区二区三免费高清在线观看-激情欧美一区二区-日韩综合网站-色小说av-夜夜夜操操操-色片在线播放-免费在线观看中文字幕
翰林提供學(xué)術(shù)活動(dòng)、國(guó)際課程、科研項(xiàng)目一站式留學(xué)背景提升服務(wù)!
400 888 0080
首頁
國(guó)際少培課程
翰林AMC8視頻課程
美國(guó)AMC8輔導(dǎo)課程
美國(guó)AMC8數(shù)學(xué)競(jìng)賽
校內(nèi)同步培優(yōu)課程
Math Explorer課程
青少年國(guó)際競(jìng)賽匯總
國(guó)際課程
A-Level課程輔導(dǎo)
IB課程輔導(dǎo)
IB-GPA雙師護(hù)航計(jì)劃
AP課程輔導(dǎo)
IGCSE課程輔導(dǎo)
美高課程輔導(dǎo)
美高學(xué)分項(xiàng)目
國(guó)際競(jìng)賽
競(jìng)賽真題資料
理科國(guó)際競(jìng)賽
商科國(guó)際競(jìng)賽
STEM科創(chuàng)競(jìng)賽
文社科國(guó)際競(jìng)賽
丘成桐中學(xué)生科學(xué)獎(jiǎng)
暑期大學(xué)先修課
標(biāo)化考試
牛劍G5筆試輔導(dǎo)
美國(guó)SAT考試
托福TOEFL考試
雅思IELTS考試
TARA考試
美國(guó)SSAT考試
小托福TOEFL JUNIOR?考試
熱門資訊
學(xué)校動(dòng)態(tài)
賽事動(dòng)態(tài)
課程動(dòng)態(tài)
關(guān)于我們
學(xué)員獎(jiǎng)項(xiàng)
2024-2025年度獎(jiǎng)項(xiàng)
2022-2023年度獎(jiǎng)項(xiàng)
2020-2021年度獎(jiǎng)項(xiàng)
翰林導(dǎo)師
加入我們
商務(wù)合作
Home
»
國(guó)際課程
»
IB課程
»
Details
IB DP Maths: AI HL復(fù)習(xí)筆記5.4.2 Techniques of Integration
Category:
IB課程
,
教材筆記
,
福利干貨
Date: 2022年7月22日 上午11:57
Integrating Composite Functions (ax+b)
What is a composite function?
A?
composite
?
function
?involves one function being applied after another
A composite function may be described as a “function of a function”
How do I integrate linear (
ax+b)
functions?
All the above can be deduced using?
reverse
?
chain
?
rule
However, spotting them can make solutions more efficient
Exam Tip
Although the specific formulae in this revision note are NOT ?in the?
formula booklet
almost all of the information you will need to apply reverse chain rule is provided
make sure you have the formula booklet open at the right page(s) and practice using it
Worked Example
Reverse Chain Rule
What is reverse chain rule?
The?
Chain Rule
?is a way of differentiating two (or more) functions
Reverse
?
Chain
?
Rule
?(RCR) refers to?
integrating
?by?
inspection
spotting that chain rule would be used in the reverse (differentiating) process
How do I know when to use reverse chain rule?
Reverse
?
chain
?
rule
?is used when we have the?
product
?of a?
composite
?
function
?and the?
derivative
?of its?
second
?
function
Integration is trickier than differentiation; many of the shortcuts do not work
How do I integrate using reverse chain rule?
If the product?
can
?be identified, the?
integration
?can be done “by?
inspection
”
there may be some “
adjusting
?and?
compensating
” to do
Notice a lot of the "
adjust
?and?
compensate
?method” happens mentally
this is indicated in the steps below by quote marks
Differentiation can be used as a means of checking the final answer
After some practice, you may find Step 2 is not needed
Do use it on more awkward questions (negatives and fractions!)
If the product?
cannot
?easily be identified, use?
substitution
Exam Tip
Before the exam, practice this until you are confident with the pattern and do not need to worry about the formula or steps anymore
This will save time in the exam
You can always check your work by differentiating, if you have time
Worked Example
Substitution: Reverse Chain Rule
What is integration by substitution?
When reverse chain rule is difficult to spot or awkward to use then?
integration
?by?
substitution
?can be used
How do I integrate using substitution?
Exam Tip
Use your G
DC
to check the value of a definite integral, even in cases where working needs to be shown
Worked Example
轉(zhuǎn)載自savemyexams
Previous post: 2022年IB大考成績(jī)公布,今年的IB成績(jī)?yōu)楹尾蝗缫酝兀?/a>
Next post: IB DP Maths: AI HL復(fù)習(xí)筆記5.4.3 Further Applications of Integration
翰林AMC8視頻課重磅上線!
國(guó)際競(jìng)賽真題資源免費(fèi)領(lǐng)取
最新發(fā)布
2026年IEO適合哪些學(xué)生參加?從新秀到專業(yè)的全面解讀!
IEO經(jīng)濟(jì)學(xué)奧賽丨2026年IEO經(jīng)濟(jì)學(xué)奧賽時(shí)間/組別/報(bào)名組隊(duì)指南
2026年IEO初級(jí)站報(bào)考時(shí)間全解析!參賽者必看!
2026年IEOchina參賽時(shí)間軸公開!附IEO全年參賽備考建議!
考前必看!2026年IEOchina初級(jí)站測(cè)評(píng)操作指南免費(fèi)領(lǐng)??!
2026年IEO經(jīng)濟(jì)學(xué)競(jìng)賽測(cè)評(píng)日期公布!附IEOchina初級(jí)站測(cè)評(píng)操作指南pdf!
2026年CBPA年度主題揭秘:寵物經(jīng)濟(jì)與自由選題如何選擇?
2026年CBPA比賽安排全覽:CBPA關(guān)鍵時(shí)間節(jié)點(diǎn)與參賽組別詳解
熱門標(biāo)簽
AMC
AMC10
AMC8
AP
物理碗
BBO
A-Level
歐幾里得數(shù)學(xué)競(jìng)賽
Physics Bowl
袋鼠數(shù)學(xué)競(jìng)賽
USABO
John Locke
USACO
AMC12
AIME
IB
PhysicsBowl
BPhO
NEC
丘成桐中學(xué)科學(xué)獎(jiǎng)
歐幾里得
UKChO
HiMCM美國(guó)高中數(shù)學(xué)建模競(jìng)賽
SIC
Euclid
? 2025. All Rights Reserved.
滬ICP備2023009024號(hào)-1
國(guó)際競(jìng)賽
了解背提項(xiàng)目
國(guó)際課程
商務(wù)合作
課程試聽
Go to top