“一個兩位數與109的乘積為四位數,它能被23整除且商是一位數,這個兩位數最大等于幾?”
好久好久沒有遇到這么簡單的題了,要不要樂博士再贈大家一道題
這個兩位數“能被23整除且商是一位數”,我不清楚還有商不是一位數的情況么?那還是兩位數么?滿足這個條件的兩位數有:23、46、69和92。
再結合另一個條件“它與109的乘積為四位數”,上面的4個數中92不符合,所以剩下:23、46和69。
綜上,這個兩位數最大等于69!
為了表達樂博士的誠意,真的贈大家一道題(順便學習一下英語):
Problem:NCAA Final Four
問題:NCAA四強
And then there were four: South Carolina in the East bracket, Gonzaga in the West bracket, Oregon in the Midwest bracket and North Carolina in the South bracket.
These four teams have earned a coveted spot in the arena known as the Final Four. There were 64 teams (not including play-in games) who entered the NCAA Tournament – 16 teams in each of the four brackets. The tournament is a single elimination, meaning each game played eliminates one team.
進入NCAA四強的球隊是:東區的南卡羅來納大學、西區的貢薩加大學、中西區的俄勒岡州大學和南區的北卡羅來納大學。
這四只球隊成為了本屆NCAA四強——the Final Four。
共有64支球隊進入了NCAA錦標賽(不包括外圍比賽),每區16支球隊。
錦標賽采取單淘汰賽制,即每場比賽淘汰失敗的球隊。
1) How many games had to be played to determine the Final Four?
問題1:決出四強共需比賽多少場?
Since one team from each of the four brackets of 16 teams advances to the Final Four,
2) how many possible Final Four team combinations were possible?
問題2:每區16支球隊,只有一個名額進入四強,四強可能的組合有多少種?
Assuming equal probability of winning for each team,
3) what is the probability that the championship game is South Carolina against North Carolina, and North Carolina then wins the national championship?
問題3:假設每場比賽雙方獲勝的幾率相等,請問決賽南卡羅來納大學與北卡羅來納大學相遇且最終北卡羅來納大學奪冠的概率是多少?
問題1:最直觀的解法是分別計算每個區決出1名四強隊伍的比賽場次:16進8比賽8場、8進4比賽4場、4進2比賽2場、2進1比賽1場,共:8 + 4 + 2 + 1 = 15(場)。
所以64支球隊決出四強需要比賽:15 × 4 = 60(場)。
針對這種單淘汰賽制的比賽還有更為簡潔的方法:因為每場比賽淘汰1支球隊,64支球隊剩下4支球隊(淘汰了60支球隊),所以共比賽:64 - 4 = 60(場)。
問題2:每個區決出的隊伍有16種可能,所以最終的四強共有:16 × 16 × 16 × 16 = 65536(種)可能的組合。
問題3:這就需要考驗大家對NCAA的熟悉度了,因為進入四強后,分別是SOUTH-WEST和EAST-MIDWEST對決,所以南卡羅來納大學與北卡羅來納大學不會提前相遇,他們分別戰勝對手的概率均為1/2、最終北卡獲勝的概率也是1/2,所以他們相遇且北卡最終奪冠的概率為:? × ? × ? = 1/8。

? 2025. All Rights Reserved. 滬ICP備2023009024號-1