
翰林國(guó)際教育全網(wǎng)首發(fā)
力爭(zhēng)超快速發(fā)布最全資料
助你在升學(xué)路上一帆風(fēng)順
為你
千千萬(wàn)萬(wàn)遍
共計(jì)2.5小時(shí)考試時(shí)間
此套試卷由三部分題目組成
4題簡(jiǎn)答題,每題4分
4題挑戰(zhàn)題,每題6分
4題解答題,每題10分
共計(jì)12題,滿分80分
不可使用任何計(jì)算器
完整版下載鏈接見(jiàn)文末
Part A Introductory Questions' Solutions:
A1)Since 2015 has 4 digits, any number larger than 2015 will also have 4 digits. Given two starting digits, in order, there is a unique 4-digit palindrome that begins with those two starting digits. For starting digits 20, the palindrome is 2002, which is less than 2015. The next smallest will start with 21 and is 2112. Since 2112 > 2015 this is the smallest palindrome greater than 2015.
Part B Challenging Questions' Solutions:
B1) For a positive integer n; let n' be the smallest prime that divides n. Then we can see that f(n) = n/n' and also that n = f(n) ?n' . We are given that f(n) = 35, so to maximize n we must maximize n': Since n' is the smallest prime factor of n; it cannot be larger than any factor of f(n): Thus, the largest possible value of n' is 5, so the largest possible value of n is 5 ? 35 = 175.
Part C Long-form Proof Problems' Solutions:
C4)
完整版真題資料可以底部二維碼免費(fèi)領(lǐng)取↓↓↓
[vc_btn title="查看更多COMC加拿大數(shù)學(xué)奧賽相關(guān)詳情" color="primary" align="center" i_icon_fontawesome="fa fa-globe" css_animation="zoomIn" button_block="true" add_icon="true" link="url:http%3A%2F%2Fwww.linstitute.net%2Farchives%2F99767||target:%20_blank|"]

? 2025. All Rights Reserved. 滬ICP備2023009024號(hào)-1